
End-to-End Computing using Functional Partitioning:
A Community Earth System Model (CESM) Case Study

Karan Sapra, Saurabh Gupta, Ross Miller, Valentine Anantharaj, Scott Atchley, Sudharshan S. Vazhkudai, Devesh Tiwari (ORNL),
Melissa C. Smith (Clemson University)

•  Compute	 node	 as	 a	 self-contained	 entity	 as	 opposed	 to	
reserving	 extra	 nodes	 or	 an	 analysis	 cluster

•  Spatially	 co-locating	 the	 simulation	 and	 post-
processing	 avoids	 the	 latency	 in	 out-of-band	 analytics,	
reduces	 overall	 data	 movement	 and	 time	 to	 solution

•  Higher	 resource	 utilization	 leads	 to	 better	 energy	
efficiency

Our Approach

Motivation

Functional Partitioning (FP) Framework

What about Jitter?

16 AMD Bulldozer Cores
(with 8 FPUs) + 1 K20 GPU +

32 GB DRAM

Titan Node Structure

•  GPU	 is	 the	 main	 compute	 engine,	 hence	 the	 CPU	 on	 a	
node	 acts	 only	 as	 a	 master

•  Just	 a	 few	 CPU	 cores	 can	 generate	 enough	 work	 to	
keep	 the	 GPUs	 busy,	 rest	 stay	 idle

•  Underutilization	 of	 CPU	 resources	

•  Post-processing	 tasks	 such	 as	 data	 validation,	 data	
analytics	 and	 mining,	 feature	 extraction,	 and	
visualization	 pre-processing	 can	 utilize	 these	
underutilized	 node-local	 CPU	 resources

Advantages Over Existing Techniques

•  Functional	 partitioning	 (FP):	 A	 runtime	 framework	
to	 facilitate	 the	 exploitation	 of	 underutilized	 CPU	
cores	 towards	 an	 applications	 own	 end-to-end	 tasks	

•  Generic	 framework	 to	 express	 the	 relationship	
between	 the	 main	 task	 and	 several	 sub-tasks

•  Simple	 library	 calls	 enable	 easier	 application	
integration	 and	 adoption

FP	 Integration with CESM

•  Specify	 FP	 tasks	 in	 a	 configuration	 file

•  FP	 tasks	 (Pthreads)	 are	 loaded	 dynamically	 at	 runtime

•  fp_post()	 to	 invoke	 tasks	 after	 writing	 analysis	 output

•  Minimal	 code	 modifications	 required	 for	 integration

Execution	 time	 of	 different	 types	 of	 client	 application	 (Base),	 main	 application

followed	 by	 post	 processing	 (Post),	 and	 main	 application	 using	 FP	 (FP)

•  Performance	 jitter	 study	 using	 micro-benchmarks	 that	
significantly	 stress	 different	 resources	 on	 the	 compute	
node

•  Consistently	 reduced	 execution	 time	 observed	 when	
using	 FP	 compared	 to	 out-of-band	 post	 processing

•  CESM	 is	 a	 memory	 intensive	 application	 and	 hence	
compute	 intensive	 workflow	 tasks	 from	 CESM	 are	 good	
candidate	 for	 end-to-end	 computing	 using	 FP	

Out-of-band	 CESM	 Workflow

Flux
Coupler

Atmosp
here

Ocean

Sea Ice

Next..

Ice
Sheets

Land
Surface

Usage	 Model

FP_Init() //Start the FP deamon!
;CESM Code!
..!
;CESM Code!
!
FP_Post(<args>) //FP deamon !

! creates Pthread!
;CESM Code!
..!
;CESM Code!
!
FP_Finalize() //Finish, Cleanup!FP services/

tasks	

Runtime Manager	

Optimizing Engine

Dynamic
Allocation

Interference
Control

Data communication
via CCI - Shared

Memory Transport

Decentralized
services

Jitter Control

Spatial
Multiplexing	

Application/
Runtimes	

FP Runtime
API	

Schematic	 of	 FP	 runtime

Feature	
tracking

Feature	
Extraction

Re-gridding

Visualization

Analysis	 cluster

e.g.	 Lens	 or	 Rhea

Periodically
write output
to PFS

Read from
PFS for
analysis

,

Spider Parallel
File System (PFS)

Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7 Core 8

Core
9

Core
10

Core
11

Core
12

Core
15

Core
13

Core
14

Core
15

Daemon
(Light Weight Management Process)

Feature
extraction

FP Task

Viz Re-gridding

FP
I/O

Aggregator GPU

IDLE

IDLE

IDLE

Compute Node

GPU
Kernel(s)

Simulation Simulation Simulation Simulation

Simulation Simulation Simulation Simulation

CESM	 Workflow	 with	 FP

CESM-FP Results

•  FP	 is	 able	 to	 increase	 resource	 utilization	 and	 reduce	 the	
overall	 execution	 time	 of	 the	 CESM	 workflow

•  Improves	 time-to-solution

Acknowledgement: This work used the resources of the Oak Ridge
Leadership Computing Facility, located in the National Center for
Computational Sciences at Oak Ridge National Laboratory, which is
supported by the Office of Science of the Department of Energy under
Contract DE-AC05-00OR22725.

0
50

100
150
200
250
300
350
400
450

CESM CESM ->
regridding

CESM + FP
(regridding)

CESM ->
regridding ->

regridding

CESM + 2* FP
(regridding)

Ex
ec

ut
io

n
Ti

m
e

Program execution time Post processing time Scheduling Delay

0

20

40

60

80

100

ICPU DCPU MEM IO

Ti
m

e(
s)

Client app: 8 Ranks, FP tasks: 8 Base

Post ICPU

Post DCPU

Post MEM

Post IO

FP ICPU

FP DCPU

FP MEM

FP IO

